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Abstract
The magnetization behavior and the magnetic entropy change of frustrated Ising
antiferromagnets with spin-1/2 on two-dimensional triangular and three-dimensional hexagonal
closed-packed lattices are calculated by using Monte Carlo simulation. The results indicate that
the normalized magnetization as a function of external field shows a 1/3 plateau on the
two-dimensional system, while it shows 0 and 1/2 plateaus on the three-dimensional system at
low temperature. Consequently, it causes an inverse magnetocaloric effect, namely, the value of
magnetic entropy change may be positive in some ranges of magnetic fields. This phenomenon
may be used to cool in a field by adiabatic demagnetization. Moreover, we analyze the spin
configurations of systems on the magnetization plateaus, and discuss the impact of the
frustration. We also find a mapping of the magnetization plateaus to the magnetic entropy
changes at low temperature. The study of such systems showing field-induced metamagnetic
transition in relation to frustrated antiferromagnets may open an important field in searching for
good candidates for room-temperature magnetic refrigeration.

1. Introduction

Since the end of the last century, magnetic refrigeration with
well refrigerated performance and special applications in some
areas has received much attention [1, 2]. One of the key points
is searching for magnetic materials with a large magnetocaloric
effect (MCE) [3, 4]. In general, the investigation of MCE
is focused on ferromagnets [5, 6], and the largest MCE can
occur in the vicinity of the temperature of magnetic-phase
transition from paramagnetism to ferromagnetism. On the
other hand, many antiferromagnetic (AF) systems showing
different temperature/field-induced metamagnetic transitions
may exhibit a large MCE, and the sign of magnetic entropy
change may be positive. This behavior is called inverse
MCE [7]. Therefore, magnetic materials with multiple
magnetic-phase transitions are of importance in the search for
‘table-like’ MCE [8]. In 2007, Du and her colleagues found a
large inverse MCE at a field-induced metamagnetic transition
from a collinear to a triangular AF configuration in the
antiferromagnet ε-(Mn0.83Fe0.17)3.25Ge [9] and a large room-

temperature MCE at a field-induced metamagnetic transition
from an AF to a ferrimagnetic configuration in Fe0.8Mn1.5As
compound [10], respectively.

In recent years, theoretical investigations have predicted
an enhanced MCE in frustrated classical spin systems at low
temperature [11, 12]. In the frustrated YbAs compound,
an inverse MCE had been reported [13]. In 2005, Sosin
et al [14] figured out that frustration can induce a large
adiabatic temperature change by studying magnetic refrigerant
material Gd2Ti2O7 on a pyrochlore lattice, and the next year
Singh et al [15] also found thermomagnetic irreversibility in
the intermetallic compound TbNiAl, which was attributed to
magnetic frustration.

The concept of geometric frustration dates back to 1950. It
is a common feature of condensed matter systems. Geometric
frustration arises when a system cannot, because of local
geometric constraints, minimize all the pairwise interactions
simultaneously. The Ising model with AF nearest-neighbor
interactions on the triangular lattice is the simplest spin system
with total frustration; it shows that the entropy at absolute zero
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temperature is finite, that is, the system is disordered, violating
the third principle of thermodynamics [16]. The three-
dimensional (3D) hexagonal closed-packed (hcp) lattice itself
also presents frustration due to geometrical topology [17].
Frustration is able to restrain the formation of long-range
AF order, whereas it is in favor of the formation of a
non-Néel state for the spin-1/2 system. In 1988, Selke
analyzed the phase diagrams and experimental applications
of the one-, two- and three-dimensional axial next-nearest-
neighbor Ising (or ANNNI) models in detail [18]. He came
to the conclusion that configurational entropy was shown to
play the decisive role in forming spatially modulated spin
patterns in this prototype model with discrete symmetry and
short-range competing interactions. Moreover, several phases
appeared versus different ranges of temperatures and fields,
and they were stable against different kinds of perturbations
at low temperature. Therefore we conjecture that systems
with an ANNNI model structure are also able to enhance the
MCE. Commonly, the two- and three-dimensional frustration
systems can be obtained by packing side-sharing or corner-
sharing structural units. Recently, scientists have paid much
attention to the two-dimensional triangular corner-sharing
Kagomé lattice and side-sharing hexagonal lattice, and the
three-dimensional tetrahedral side-sharing face-centered cubic
(fcc) lattice and corner-sharing spinel, laves planes and
pyrochlore lattices. Moessner and his colleague studied
systematically the ground-state and low-temperature properties
of the magnets on corner-sharing (Kagomé, pyrochlore,
SCGO, and GGG) lattices with strong geometric frustration
[19, 20]. They found that the universal features of these
magnets were traced back to a large ground-state degeneracy in
model systems, which rendered them highly unstable towards
perturbations.

In some cases, the frustration can be so intense that
it induces novel and complex phenomena. Zhitomirsky
et al [21] by theoretical simulation and Cao et al [22]
by experimental measurement obtained the magnetization
plateaus, respectively. Ciftja and co-workers [23, 24]
also obtained a magnetization plateau at low temperature.
Moreover, they found that there was an absence of rapid
changes in the magnetic moment of the system that occur for
S = 1/2 when they studied dimer, equilateral triangle, square,
and regular tetrahedron arrays of spins by using an analytical
method. They concluded that the rapid changes in magnetic
moment versus applied magnetic field at low temperature that
occurred for the case S = 1/2 were a direct consequence
of ground-state level crossing. Blankschtein et al [25] by
using Landau–Ginzburg–Wilson (LGW) theory and Netz et al
[26] by using mean-field (MF) theory studied the influence
of frustration in 3D and two-dimensional (2D) systems on
specific heat in zero external field. They observed two peaks
in the curve of the specific heat as a function of temperature.
However, in their models the interlayer frustration effect was
not introduced. The ‘spin ice’ compound with pyrochlore
structure is another kind of frustrated magnetic material [27]
which shows novel and complex phenomena. Using the
Heisenberg and Ising models with exchange couplings, dipolar
interactions and a strong easy-axis anisotropy, Moessner and

Sondhi et al found that the application of a magnetic field
along the [111] direction led to two magnetization plateaus,
and between them the entropy exhibited a giant spike [28, 29].

At present, geometrically frustrated magnets are consid-
ered to be in a separate class from both unfrustrated and dis-
ordered magnets (spin glasses and the like). Therefore, an in-
vestigation of the magnetism properties of geometrically frus-
trated magnets will be significant. In this paper, we investigate
the ‘fully’ frustrated antiferromagnets, and study the influence
of frustration on magnetization behavior and the magnetic en-
tropy change. The hcp lattice will be used here because it is
one of the commonest and most important crystalline struc-
tures in metals [30]. We find exotic magnetization plateaus on
the hcp lattice, and establish a relation between the magneti-
zation plateaus and the magnetic entropy changes. We intro-
duce our model in section 2, and present simulation results and
a discussion in section 3. Finally, we present a summary in
section 4.

2. Model and simulation method

An Ising AF model on layered triangular lattices with hcp
structure is considered. Thus we can study the effect of
frustration from 2D triangular to 3D hcp lattices. The
Hamiltonian in an external field is,

H = −J12

xy∑

〈i, j〉
si s j − J3

z∑

〈i, j〉
si s j − H

∑

i

si , (1)

where 〈i, j〉 indicates summation over the nearest-neighbor
pairs, si(s j ) = ±1/2. The first term is the exchange interaction
between the nearest-neighbor spins in the xy plane, J12 is
the exchange integral and J12 < 0. The second term is the
exchange interaction between the nearest-neighbor spins along
the z direction, J3 is the exchange integral and J3 � 0. As
J3 = 0, the system is just a 2D triangular lattice model. The
last term is the Zeeman energy, and H is the external field.

In the calculation, let j12 = J12/|J12| = −1,
j3 = J3/|J12| and h = H/|J12| represent the reduced
intralayer exchange integral, the interlayer exchange integral
and the external field, respectively, and let TR = kBT/|J12|
represent the reduced temperature. We will employ a single
spin-flip Monte Carlo (MC) metropolis algorithm [31] with
periodic boundary conditions to study the system described in
equation (1). In order to check the effects of the simulation
size and MC step on the magnetization, in figure 1 we give
the simulation results for the magnetization as a function of
external field at low temperature with different simulation sizes
and MC steps.

It is found that the magnetizations are almost independent
of the numbers of spins in the present size of system in
figure 1(a). The reason may be that short-range interaction
is considered and periodic boundary conditions are used. As
shown in figure 1(b), when the number of MC steps is above
10 000, the magnetization is almost unchanged. Although
finite steps in the simulation are adopted, the impact on spin
states of the MC step number is very weak in the frustrated
Ising AF model when the step number is sufficient [32]. Thus
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0.2

0.2

Figure 1. The normalized magnetization (M/MS) as a function of
reduced external field in the antiferromagnetic Ising model on a 3D
hcp lattice with different numbers (N) of spins (a) and MC steps (b).

in the present simulation we take the sizes of the system to be
24 × 24 × 24 spins on 3D hcp and 80 × 80 × 2 spins on 2D
triangular lattices with periodic boundary conditions. The first
15 000 MC steps per spin are discarded for equilibrium and
thermal averages are taken with the next 15 000 MC steps.

3. Results and discussion

3.1. Magnetization behavior

Now, we investigate the 2D and 3D AF Ising models by using
the standard MC simulation method. Figures 2(a) and (b)
show the normalized magnetization as a function of reduced
external field on 2D and 3D lattices at different temperatures,
respectively. From figure 2, it is found that the magnetization
as a function of external field shows a plateau at 1/3 on the 2D
lattice, and two plateaus at 0 and 1/2 on the 3D lattice at low
temperature. With increasing temperature, the magnetization
plateaus gradually shorten. Finally, the magnetization plateau
on the 2D lattice vanishes at T C

R ≈ 0.34 and the two
magnetization plateaus vanish simultaneously at T C

R ≈ 0.46
on the 3D lattice (figure 2). Furthermore, the higher the
temperature, the stronger is the field needed to make the system

Figure 2. The normalized magnetization (M/MS) as a function of
reduced external field in the antiferromagnetic Ising model on 2D
triangular (a) and 3D hcp (b) lattices at different temperatures.

saturate. The results are in good agreement with those obtained
by Ciftja et al using the analytical method [23]. Commonly,
a frustrated system is in magnetic disorder in zero external
field at finite temperature, although the frustration effect can
produce extra restraint on thermal fluctuation. Only in an
external field can the system show an ordered structure, and
the magnetization plateau phenomena may appear [21, 22].

In order to analyze directly the reason why magnetization
plateaus exist, we explore the local spin configuration of an
arbitrary point on the plateaus at low temperature. The spin
configuration of an AF Ising model on a 2D triangular lattice
at low temperature is shown in figure 3. It is observed
that the lines of spins corresponding to sublattices B and
C are fully frustrated in the plane, since they have three
satisfied and three unsatisfied bonds. Therefore, when the
system is magnetized, only two sublattices of A, B , and C
will be along the direction of the external field, that is, the
average magnetization value of a unit cell is 1/3. There is
a period with a transverse 3 lattice constant, and a vertical√

3 lattice constant. Therefore the normalized magnetization
produces a 1/3 plateau macroscopically. The result is the
same as one of the ground-state configurations pointed out
by Coppersmith [33]. She proposed that the appearance of

3
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Figure 3. The spin configuration of the Ising antiferromagnet on the
2D triangular lattice at TR = 0.2 in h = 1.5; ABC is a unit cell.
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Figure 4. The normalized magnetization (M/MS) as a function of
reduced external field in the antiferromagnetic Ising model on the
3D hcp lattice with different j3 at TR = 0.2.

such a configuration was favored at low temperature because
of entropy considerations. This state is stable within a range
of external fields due to the influences of exchange interaction
and frustration.

For the sake of analyzing the phenomena of magnetization
plateaus on the 3D lattice, we study the magnetization

Figure 5. The spin configuration of the Ising antiferromagnet on the
3D hcp lattice with j3 = −0.1 at TR = 0.2 in h = 1.5; A–L is a unit
cell, and solid and open arrows represent the first- and
second-layered spins perpendicular to the paper plane, respectively.

Figure 6. The spin configurations of the Ising antiferromagnet on the
3D hcp lattice with j3 = −1 at TR = 0.2 in weak (a) and strong (b)
external fields; A–L is a unit cell in (b), and solid and open arrows
represent the first- and second-layered spins perpendicular to the
paper plane, respectively.

behaviors of a system with different J3 at low temperature,
and the results are given in figure 4. When the interlayer
exchange interaction is weak, the magnetization is still similar
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Figure 7. The magnetic entropy change per spin and normalized magnetization (M/MS) as functions of reduced external field in the
antiferromagnetic Ising models on 2D triangular (a), (b) and 3D hcp (c), (d) lattices.

to that on the 2D lattice, that is, it exhibits a magnetization
plateau. Its spin configuration is shown in figure 5. There
is a period with a transverse 3 lattice constant, a vertical

√
3

lattice constant and a 2
√

6/3 lattice constant perpendicular
to the paper plane. Since the average magnetization value
of a unit cell A–L is also 1/3, the normalized magnetization
shows a 1/3 plateau macroscopically. It is observed that the
magnetization plateau at 1/3 becomes obscure and two new
plateaus at 0 and 1/2 gradually appear with an increase in
| j3|. Finally, the magnetization plateau at 1/3 vanishes entirely.
Instead, the two new magnetization plateaus at 0 and 1/2 are
stabilized.

The local spin configurations of two arbitrary points on
the magnetization plateaus on a 3D lattice with j3 = −1 at low
temperature are given in figure 6. From figure 6(a), it is found
that the spin configuration is disordered in a weak external
field, leading the value of normalized magnetization being
zero. The reason may be that the 3D AF exchange interaction
is strong enough, which makes the Zeeman energy unavailable
to overcome it to make the spins align along the direction of the
external field. The system is still in the frustrated state, that is,
the spin configuration is disordered in the weak external field,
and the magnetization is zero, forming the first plateau at 0
macroscopically. However, in a strong external field the spin
configuration becomes ordered again, as shown in figure 6(b),
and forms a period with a transverse 2 lattice constant, a
vertical 2

√
3 lattice constant and a 2

√
6/3 lattice constant

perpendicular to the paper plane. The average magnetization
value of a unit cell A–L is 1/2, and as a result the value
of normalized magnetization is 1/2, that is, producing the

second plateau at 1/2 macroscopically. Based on the analyses
above, the pattern of field-induced metamagnetic transition has
been changed due to the introduction of an interlayer exchange
integral. There are two phase-transition points in the range
of fields with a strong interlayer exchange integral at low
temperature, and the feature is analogous to phase versus field
at low temperature in the ANNNI models [18].

The phenomena of magnetization plateaus on 2D and
3D antiferromagnets show that different magnetic phases are
formed with an increase in external field at low temperature.
However, the field-induced magnetic-phase transitions vanish
when the temperature is high enough, as shown in figure 2.

3.2. Magnetic entropy change

In order to investigate the influence of frustration on the
magnetic entropy change, we use the thermodynamic Maxwell
equation, (

∂S

∂ H

)

T

=
(

∂M

∂T

)

H

, (2)

where S denotes magnetic entropy, T denotes temperature, and
M denotes the total magnetic moment in the external field H .
Thus the magnetic entropy change �S(T, H ) of the system
from zero field to a field of H can be derived from the above
equation by integrating over the magnetic field:

�S(T, H ) =
∫ H

0

(
∂M

∂T

)

H

dH ≈
∑

i

(
∂M

∂T

)

H i

�H i

= kB

∑

i

(
∂M

∂TR

)

hi

�hi . (3)
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It is found from equation (3) that the greatest magnetic entropy
change is related to the speed of variation of magnetization
with temperature. Because materials with a considerable
magnetic entropy change over a temperature span can be
considered as practical refrigerants, research on magnetic
entropy change is of great importance to finding potential
magnetic refrigerant materials.

Figures 7(a) and (c) show the magnetic entropy changes
per spin as a function of reduced external field at low temper-
ature on 2D and 3D lattices, respectively; the corresponding
magnetization behaviors are shown in figures 7(b) and (d). In
a common sense, the thermal fluctuation energy of spins in-
creases with increasing temperature, making the system diffi-
cult to magnetize in an external field, that is, �M is usually
negative as �T is positive in a finite external field. There-
fore the magnetic entropy change is usually negative; in other
words, the system is exothermic as an external field is applied.
However, in the present system the magnetic entropy change
as a function of external field may be positive, as shown in
figures 7(a) and (c); an endothermic phenomenon appears in
an external field. We can find clues from the magnetization
process to analyze this anomalous phenomenon. As shown in
figure 7, it is found that the value of external field at which
the magnetization plateau begins just corresponds to the place
where the magnetic entropy change achieves a negative max-
imum, and the value at which the magnetization plateau ends
just corresponds to the place where the positive magnetic en-
tropy change begins. The reason may be that the variations in
magnetization as a function of external field become extrema
in the vicinity of the beginning and end of the magnetization
plateaus. In helimagnetic dysprosium, a positive magnetic en-
tropy change was found at 174 K in a weak magnetic field [4],
and in ‘spin ice’ it has also been found that the entropy exhibits
a giant spike between two plateaus [29]. However, in [29],
the intuitive corresponding relation between plateaus and mag-
netic entropy changes was not presented theoretically. That
is, the beginning and end of magnetization plateaus on 2D
or 3D lattices map on to the negative maximum and positive
starting points of magnetic entropy changes, respectively. Du
et al in their letters discussed that the occurrence of a mag-
netically inhomogeneous state near the transition temperature
is because the first-order magnetic transition leads to the pres-
ence of mixed magnetic exchange interaction [9]. According to
the discussion above, we have deduced that the phenomena of
magnetization plateaus and positive magnetic entropy changes
exist due to frustration, and that the magnetization plateau and
the magnetic entropy change have a corresponding relation-
ship. Moreover, we conclude that, due to the presence of frus-
tration and magnetic exchange interaction, the application of
an external magnetic field also leads to further spin disorder in
our systems, which makes the magnetic entropy increase.

The magnetic entropy changes per spin as a function
of temperature in different external fields on 2D and 3D
lattices are shown in figures 8(a) and (b), respectively.
It is found that in different ranges of external fields the
magnetic entropy change exhibits a positive or negative
maximum in the frustrated system at low temperature.
However, as the temperature is elevated by some extent,

Figure 8. The magnetic entropy change per spin as a function of
reduced temperature in the antiferromagnetic Ising model on the 2D
triangular (a) and 3D hcp (b) lattices.

the positive magnetic entropy change no longer appears.
The extrema of the magnetic entropy change appear
here due to the field-induced transition from a frustrated
phase to a paramagnetic phase entirely, which is different
from the common temperature-induced phase-transition from
ferromagnetism/antiferromagnetism to paramagnetism.

4. Conclusions

In conclusion, the Ising antiferromagnets on 2D triangular and
3D hcp lattices with geometrical frustration have been studied.
We discuss the magnetization behavior at low temperature.
The results indicate that the normalized magnetization as a
function of reduced external field shows a 1/3 plateau on the
2D system, while it shows 0 and 1/2 plateaus on the 3D system
at low temperature. In order to explain the phenomena, we
present and analyze the microstructure of spins of the system,
and study the change in magnetization behavior and the spin
configuration, as the system varies from two dimensions to
three dimensions. In the next part, we investigated the
magnetic entropy change as a function of external field and
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temperature. It is observed that the values of magnetic entropy
change may be positive at low temperature, which is contrary
to common sense. The anomalous phenomena are related to
the magnetization plateaus; the beginning of a magnetization
plateau corresponds to the negative maximum of a magnetic
entropy change, and the end of a magnetization plateau just
corresponds to the start of a positive magnetic entropy change.
The mapping of the magnetization plateaus on to magnetic
entropy changes indicates that frustration plays a crucial role.
At zero temperature, the ground state of a frustrated system
is degenerate, and the entropy is finite, thus spontaneous
magnetization is absent. However, at finite temperature,
the specific heat exhibits two peaks. In an external field,
the magnetization exhibits plateaus and a positive magnetic
entropy change appears. The degeneracy of the state may
be the main reason. The study of systems with frustrated
antiferromagnetic phases may open up an important field in
searching for new materials for magnetic refrigeration.
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